Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.573
Filtrar
1.
Sci Rep ; 14(1): 7692, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565897

RESUMO

The near-infinite compositional space of high-entropy-alloys (HEAs) is a huge resource-intensive task for developing exceptional materials. In the present study, an algorithmic framework has been developed to optimize the composition of an alloy with chosen set of elements, aiming to maximize the hardness of the former. The influence of phase on hardness prediction of HEAs was thoroughly examined. This study aims to establish generalized prediction models that aren't confined by any specific set of elements. We trained the HEA identification model to classify HEAs from non-HEAs, the multi-labeled phase classification model to predict phases of HEAs also considering the processing route involved in the synthesis of the alloy, and the hardness prediction model for predicting hardness and optimizing the composition of the given alloy. The purposed algorithmic framework uses twenty-nine alloy descriptors to compute the composition that demonstrates maximum hardness for the given set of elements along with its phase(s) and a label stating whether it is classified as HEA or not.

2.
J Pharm Bioallied Sci ; 16(Suppl 1): S427-S430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595483

RESUMO

Background: Surface roughness and hardness are key factors that influence the clinical performance and durability of denture teeth. Understanding variations in these properties among different denture teeth materials can assist in selecting the most suitable materials for optimal patient outcomes. This study aimed to investigate the surface roughness and hardness of four commonly used denture teeth materials: acrylic resin, composite resin, porcelain, and nanohybrid composite. Materials and Methods: Ten specimens were prepared for each denture teeth material, resulting in a total of 40 specimens. Surface roughness was assessed using a profilometer, and measurements were recorded in micrometers (µm). Hardness was determined using a Vickers hardness tester, and results were expressed as Vickers hardness numbers (VHN). The surface roughness and hardness data were analyzed using appropriate statistical tests (e.g., analysis of variance), with significance set at P < 0.05. Results: The results revealed significant differences in both surface roughness and hardness among the different denture teeth materials (P < 0.05). Acrylic resin exhibited the highest surface roughness (mean ± standard deviation: 3.45 ± 0.78 µm) and the lowest hardness (mean ± standard deviation: 45.6 ± 2.3 VHN). Composite resin demonstrated intermediate values of surface roughness (mean ± standard deviation: 1.87 ± 0.54 µm) and hardness (mean ± standard deviation: 65.2 ± 3.9 VHN). Porcelain demonstrated the smoothest surface (mean ± standard deviation: 0.94 ± 0.28 µm) and the highest hardness (mean ± standard deviation: 78.5 ± 4.1 VHN). Nanohybrid composite displayed surface roughness and hardness values similar to composite resin. Conclusion: This study demonstrated significant variations in surface roughness and hardness among the different denture teeth materials evaluated. Acrylic resin exhibited the roughest surface and lowest hardness, while porcelain demonstrated the smoothest surface and highest hardness. Composite resin and nanohybrid composite exhibited intermediate values. These findings provide valuable insights for prosthodontic practitioners in selecting denture teeth materials based on specific clinical requirements, aiming to achieve optimal aesthetics, reduced plaque accumulation, and improved wear resistance.

3.
Jpn Dent Sci Rev ; 60: 137-147, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38595985

RESUMO

The longevity of an extraoral prosthesis depends on its physical and mechanical properties and user maintenance. Faced with multiple outcome measures, researchers find it difficult to determine the most appropriate extraoral prosthetic material. This comprehensive review evaluates the most used extraoral prosthesis materials and qualitatively assesses their longevity and function. The study aims to identify and interpret the results of current updates on the factors that affect longevity and functionality. This comprehensive review summarizes and evaluates differences in the properties of commonly used extraoral maxillofacial prosthetic materials. The review was planned to focus on all factors related to the longevity and function of the extraoral maxillofacial prosthetics. An electronic search covered English articles in PubMed, Scopus, Google Scholar, Web of Science, and grey literature. Manual searching was also performed. Six authors participated in the screening. Search engines extracted 1107 records, and 88 studies were included for qualitative and bias assessments. Silicones are the most frequently used extraoral maxillofacial prosthetic materials. Heat-cured silicones are more color-stable than those cured at room temperature. Additional ingredients and processing techniques affect prosthesis longevity.

4.
Nutr Res Pract ; 18(2): 223-238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584816

RESUMO

BACKGROUND/OBJECTIVES: The purpose of this study was to establish a fruit-cooking method suitable for older adults with masticatory dysfunction. MATERIALS/METHODS: Five types of fruits were selected to make fruit jelly and puree: apple, sweet persimmon, mandarin, Korean melon, and watermelon. Recipes were selected based on the Korean Industrial Standard (KS) for senior-friendly foods (KS H 4897), which classifies foods into 3 levels (L1-L3) based on their hardness and viscosity. RESULTS: In South Korea, senior-friendly foods are classified into 3 stages based on their hardness. Stage 1 is for foods that are able to eat with teeth (hardness greater than 50,000 N and less than 500,000 N), Stage 2 is for foods that are able to eat with gums (hardness greater than 20,000 N and less than 50,000 N), and Stage 3 is for foods that are able to eat with the tongue (hardness less than 20,000 N). As a result of measuring the hardness by varying the shape of the fruit, it was found that nearly all fruits could be eaten fresh by chewing with the teeth (L1) but did not meet the KS for mastication using the gums (L2) or tongue (L3), so the cooking method was selected as fruit jelly and fruit puree. Only sweet persimmon, which had a hardness of 61,624-496,393 N, was not suitable for consumption in fresh fruit, unprocessed form. Based on their hardness measurements, fruit jellies (27,869 to 36,343 N) and fruit purees (315 to 1,156 N) met the L2 and L3 requirements, respectively. The viscosity results of all fruit purees met the L3 requirement. CONCLUSION: These results offer a simple cooking method to prepare texture-modified fruits suitable for safe consumption by older adults living with masticatory difficulties in general households and nursing facilities.

5.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591455

RESUMO

A homogenized, supersaturated AlZnMgZr alloy was processed via severe plastic deformation (SPD) using a high-pressure torsion (HPT) technique for different revolutions at room temperature to obtain an ultrafine-grained (UFG) microstructure. The microstructure and mechanical properties of the UFG samples were then studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile and hardness measurements. The main purpose was to study the effect of shear strain on the evolution of the microstructure of the investigated alloy. We found a very interesting evolution of the decomposed microstructure in a wide range of shear strains imposed by HPT. While the global properties, such as the average grain size (~200 nm) and hardness (~2200 MPa) appeared unchanged, the local microstructure was continuously transformed. After 1 turn of HPT, the decomposed UFG structure contained relatively large precipitates inside grains. In the sample processed by five turns in HPT, the segregation of Zn atoms into grain boundaries (GBs) was also observed. After 10 turns, more Zn atoms were segregated into GBs and only smaller-sized precipitates were observed inside grains. The intensive solute segregations into GBs may significantly affect the ductility of the material, leading to its ultralow-temperature superplasticity. Our findings pave the way for achieving advanced microstructural and mechanical properties in nanostructured metals and alloys by engineering their precipitation and segregation by means of applying different HPT regimes.

6.
Materials (Basel) ; 17(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38591615

RESUMO

Super 304H has been a crucial material for ultra-supercritical boilers. However, the relationship between microstructure evolution, strengthening mechanism, and embrittling behavior during long-term aging was lacking investigation. This investigation aimed to reveal the strengthening and embrittling mechanism from precipitates in Super 304H. The results showed that the hardness increment came from the grain boundary's M23C6 (GB's M23C6) and intragranular nano Cu-rich particles. After being aged for 5000 h, the GB's M23C6 and nano Cu-rich particles provided a hardness increment of approximately 10 HV and 30 HV, respectively. The impact toughness gradually decreased from 213 J/cm2 to 161 J/cm2 with the extending aging time. For the aged Super 304H, the GB's M23C6 provided a higher cracking source. In addition, the nano Cu-rich particle restricted the twin-induced plastic deformation of austenitic grain and depressed the absorbed energy from austenitic grain deformation.

7.
Microsc Res Tech ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646819

RESUMO

Evaluation of the impact of the latest root canal disinfectant, that is carbon quantum dots (CQDs), synchronized microbubble-photodynamic activation (SYMPA), and Nd: YAG laser along with ethylenediaminetetraacetic acid (EDTA) as a final irrigant on the Marten hardness (MH), smear layer (SL) removal, and extrusion bond strength (EBS) of zirconia post to the canal dentin. Eighty intact single-rooted premolars were obtained and disinfected using 0.5% chloramine-T solution. Root canal preparation was performed using ProTaper files followed by obturation. The post space was prepared for prefabricated zirconia post and all the teeth were randomly divided into four groups based on the disinfection used (n = 20 each) Group 1: 5.25% NaOCl + 17% EDTA (Control), Group 2: Nd: YAG laser + 17% EDTA, Group 3: SYMPA + 17% EDTA, and Group 4: CQDs + 17% EDTA. MH, SL removal, and EBS of zirconia post-bonded to root dentin were performed using a microhardness tester, scanning electron microscope (SEM), and universal testing machine, respectively. Both intragroup and intergroup comparisons were performed using one-way analysis of variance (ANOVA) and posthoc-Tukey test for significant difference (p < .05). Group 2 samples (Nd: YAG laser + 17% EDTA) (0.24 ± 0.06 GPa) exhibited highest values of MH. Samples in group 3 (SYMPA + 17% EDTA) treated teeth unveiled the lowest MH scores (0.13 ± 0.02 GPa). Moreover, the coronal third of Group 3 specimens (SYMPA and 17% EDTA) (1.54 ± 0.31) eliminated SL from the canal with the greatest efficacy as well as presented the highest EBS (10.13 ± 0.69 MPa). However, the apical third of Group 1 samples (5.25% NaOCl + 17% EDTA) (2.95 ± 0.33) exhibited the least efficient elimination of SL from the radicular dentin as well as the lowest bond strength (5.11 ± 0.19 MPa) of zirconia post to the dentin. The SYMPA technique with 17% EDTA proved highly effective in removing the SL from canal dentin and enhancing the EBS of zirconia posts. The least preferable method for SL removal and MH improvement was found to be 5.25% NaOCl + 17% EDTA. CQDs and Nd: YAG laser demonstrated satisfactory smear layer removal properties from the canal, along with achieving appropriate bond strength of zirconia posts. RESEARCH HIGHLIGHTS: Nd: YAG laser and 17% EDTA as canal disinfectant exhibited the highest values of MH. Specimens irrigated with SYMPA and 17% EDTA eliminated SL from the canal with the greatest efficacy. The coronal third of Group 3 (SYMPA + 17% EDTA) samples unveiled the highest zirconia post-bond integrity score to the canal dentin. Cohesive failure was a dominant failure type among different experimental groups.

8.
ACS Biomater Sci Eng ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627890

RESUMO

Ti-Au intermetallic-based material systems are being extensively studied as next-generation thin film coatings to extend the lifetime of implant devices. These coatings are being developed for application to the articulating surfaces of total joint implants and, therefore, must have excellent biocompatibility combined with superior mechanical hardness and wear resistance. However, these key characteristics of Ti-Au coatings are heavily dependent upon factors such as the surface properties and temperature of the underlying substrate during thin film deposition. In this work, Ti3Au thin films were deposited by magnetron sputtering on both glass and Ti6Al4V substrates at an ambient and elevated substrate temperature of 275 °C. These films were studied for their mechanical properties by the nanoindentation technique in both variable load and fixed load mode using a Berkovich tip. XRD patterns and cross-sectional SEM images detail the microstructure, while AFM images present the surface morphologies of these Ti3Au thin films. The biocompatibility potential of the films is assessed by cytotoxicity tests in L929 mouse fibroblast cells using Alamar blue assay, while leached ion concentrations in the film extracts are quantified using ICPOEMS. The standard deviation for hardness of films deposited on glass substrates is ∼4 times lower than that on Ti6Al4V substrates and is correlated with a corresponding increase in surface roughness from 2 nm for glass to 40 nm for Ti6Al4V substrates. Elevating substrate temperature leads to an increase in film hardness from 5.1 to 8.9 GPa and is related to the development of a superhard ß phase of the Ti3Au intermetallic. The standard deviation of this peak mechanical hardness value is reduced by ∼3 times when measured in fixed load mode compared to the variable load mode due to the effect of nanoindentation tip penetration depth. All tested Ti-Au thin films also exhibit excellent biocompatibility against L929 fibroblast cells, as viability levels are above 95% and leached Ti, Al, V, and Au ion concentrations are below 0.1 ppm. Overall, this work demonstrates a novel Ti3Au thin film system with a unique combination of high hardness and excellent biocompatibility with potential to be developed into a new wear-resistant coating to extend the lifetime of articulating total joint implants.

9.
Vet Res Commun ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630426

RESUMO

Feed and water components may interact with drugs and affect their dissolution and bioavailability. The impact of the vehicle of administration (feed and water) and the prandial condition of weaner piglets on amoxicillin´s oral bioavailability was evaluated. First, amoxicillin's in vitro dissolution and stability in purified, soft, and hard water, as well as release kinetics from feed in simulated gastric and intestinal media were assessed. Then, pharmacokinetic parameters and bioavailability were determined in fasted and fed pigs using soft water, hard water, or feed as vehicles of administration following a balanced incomplete block design. Amoxicillin showed similar dissolution profiles in soft and hard water, distinct from the dissolution profile obtained with purified water. Complete dissolution was only achieved in purified water, and merely reached 50% in soft or hard water. Once dissolved, antibiotic concentrations decreased by around 20% after 24 h in all solutions. Korsmeyer-Peppas model best described amoxicillin release from feed in simulated gastric and intestinal media. Feed considerably reduced antibiotic dissolution in both simulated media. In vivo, amoxicillin exhibited significantly higher bioavailability when delivered via water to fasted than to fed animals, while in-feed administration yielded the lowest values. All treatments showed a similar rate of drug absorption. In conclusion, we demonstrated that water and feed components, as well as feed present in gastrointestinal tract of piglets decrease amoxicillin´s oral bioavailability. Therefore, the use of oral amoxicillin as a broad-spectrum antibiotic to treat systemic infections in pigs should be thoroughly revised.

10.
J Esthet Restor Dent ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623067

RESUMO

OBJECTIVES: This study was aimed to obtain an experimental bleaching agent by adding casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in order to eliminate the mineral loss on the tooth surface after bleaching and to evaluate the bleaching effectiveness. MATERIALS AND METHODS: In this study, experimental bleaching agents containing 1%, 3% CPP-ACP and without CPP-ACP were obtained. Bleaching effectiveness (color change), the effect of bleaching agents on mineral content (energy dispersive x-ray spectroscopy), surface morphology (scanning electron microscope), and surface hardness of enamel (Vicker's microhardness) before and after bleaching were evaluated. The obtained data were statistically analyzed. RESULTS: When the bleaching levels of the groups were compared, no statistically significant difference was observed between the control and 1% CPP-ACP groups (p > 0.05) while the addition of 3% CPP-ACP decreased significantly the effectiveness of the bleaching agent (p < 0.05). When the effects of experimental bleaching agents on surface hardness were examined, while the enamel surface hardness decreased statistically significantly after application in the control group (p < 0.05), no statistically significant change was observed in surface hardness after the application of 1% CPP-ACP containing bleaching agent (p > 0.05). However, a statistically significant increase was observed in surface hardness after the application of 3% CPP-ACP containing bleaching agent (p < 0.05). When the Ca and P ratio of the groups were compared, no statistically significant difference was observed between the control and 1% CPP-ACP groups (p > 0.05), while they increased significantly in 3% CPP-ACP group (p < 0.05). CONCLUSIONS: The addition of 1% CPP-ACP to the bleaching agent had positive effects on the mineral content and surface hardness of the enamel, and did not negatively affect the whitening effectiveness. CLINICAL SIGNIFICANCE: Adding CPP-ACP to the bleaching agent at appropriate concentrations can eliminate possible negative effects without compromising the effectiveness of the bleaching agent.

11.
Iperception ; 15(2): 20416695241245021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616784

RESUMO

When a human strokes the surface of an object with his/her finger, the surface shape influences the perceived softness of the object. This study introduced a curved surface softness illusion, which alters the perception of material softness. When a surface with curvature is felt by sliding a finger over it, it feels softer than a flat surface made of the same material. In contrast, a rugged surface is perceived as harder. This illusion indicates that, in addition to mechanical hardness, humans judge an object's softness based on its surface shape.

12.
Materials (Basel) ; 17(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612175

RESUMO

Dental amalgams have been used by dentists for the restoration of posterior human teeth. However, there have been concerns about the release of mercury from amalgams into the oral cavity. The objective of the present research is to study the effect of titanium (Ti) nanoparticles on the microstructural mechanism of the release of mercury vapor in two commonly used brands of dental amalgam (the Dispersalloy: 11.8% Cu; the Sybralloy: 33% Cu). Ti powder was added to both the Dispersalloy and the Sybralloy in increments of 10 mg up to 80 mg. The addition of Ti powder to both brands of dental amalgam has been found to result in a considerable decrease in Hg vapor release. The decrease in the Hg vapor release due to Ti addition has been explained by the formation of strong Hg-Ti covalent bonds, which reduce the availability of Hg atoms for evaporation. The Ti atoms in excess of the solubility limit of Ti in Hg reside in the grain boundaries, which also reduces the evaporation of Hg from the amalgam. The binding of Hg with Ti via a strong covalent bond also results in a significant improvement in mechanical properties such as Vickers hardness.

13.
Food Sci Nutr ; 12(4): 2702-2723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628210

RESUMO

This study presents a novel packaging film based on whey protein isolate/κ-carrageenan (WC) with red grape pomace anthocyanins (RGA) to investigate its impact on some qualitative attributes of emergency food bars (EFBs) for 6 months at 38°C. Increasing the RGA dose in WC films from 5% (WCA5) to 10% (WCA10) reduced hydrogen bonding between polymers and polymer homogeneity in the matrix according to FTIR and SEM. Tensile strength slightly declined in WCA5 from 7.47 ± 0.26 to 6.97 ± 0.12, while elongation increased from 27.74 ± 1.36 to 32.36 ± 1.25% compared to WC film. The maximum weight loss temperature (TM) increased by incorporating 5 wt% RGA from 182.95°C to 244.36°C, whereas TM declined to 187.19°C in WCA10 film. WVP and OTR slightly changed in WCA5 (from 7.83 ± 0.07 and 2.57 ± 0.18 to 8.41 ± 0.03 g H2O.m/m2.Pa.s × 10-9 and 1.79 ± 0.32 cm3 O2/m2.d.bar, respectively), but significantly impaired in WCA10 compared to WC film. WCA5 and WCA10 films had high AA%, 68.77%, and 79.21%, respectively. WCA10 film presented great antimetrical properties against Staphylococcus aureus with an inhibition zone of 6.00 mm. The light transmission of RGA-contained films in the UV spectrum was below 10%. The WCA5 film effectively restrained moisture loss and hardness increment until the end of the storage period, which were 14.33% and 28.76%, respectively, compared to day 0. Antioxidant films provided acceptable resistance against oxidation to EBF treatment. Sensory panels scored WCA5 and WCA10 higher in overall acceptance with 5.64 and 5.40 values, respectively, while complaining about the hardness of OPP treatment. The results of this investigation demonstrated that incorporating RGA, preferably 5 wt%, into WC-based film effectively improved the qualitative properties of EFB during the 6-month shelf life. This film might be a promising alternative for packaging light and oxygen-sensitive food products.

14.
Poult Sci ; 103(6): 103750, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38652952

RESUMO

Yolk carotenoid profile reflects the hen diet when corn grain is the only source of carotenoids, but corn origin and processing may affect carotenoid utilization. In the present study, 2 commercial dent corn hybrids differing in grain hardness (soft- and hard-type) were dried at low (40°C) and high (85°C) temperature and ground through a 5- and 9-mm sieve to investigate their effects on carotenoid bioavailability in laying hens. With 3 hens per cage, 168 Lohmann Brown laying hens were allocated to 8 dietary treatments (2 hybrids × 2 drying temperatures × 2 grinding sieves) in a completely randomized design (8 treatments × 7 cages). The trial lasted 8 wk, during which eggs were collected for analysis every 3 d until carotenoid content stabilized, and then once a week until the end of the experiment. The carotenoid profile of the experimental diets and yolks was analyzed using an HPLC method and deposition efficiency was calculated based on carotenoid contents, yolk weight, egg production and diet intake. The deposition efficiency for lutein, zeaxanthin, α- and ß-cryptoxanthin, and ß-carotene averaged 27.37, 18.67, 6.29, 3,32, and 0.94%, respectively. As expected, the tested hybrids highly affected the carotenoid content in egg yolk due to their differences in carotenoid profile. Interestingly, hard- and soft-type hybrids differed in the deposition efficiency for all individual carotenoids but not for the total carotenoids. High grain drying temperature tended to increase the bioavailability of lutein and zeaxanthin in both hybrids. For the hard-type hybrid, the content of ß-carotene in egg yolk was higher when grains were dried at a high temperature, while the opposite response was found in the soft-type hybrid. The effect of grinding sieve size was important for the zeaxanthin bioavailability in the soft-type hybrid only. In conclusion, our findings showed that corn hybrid had a primary influence on the carotenoid content in the yolks of laying hens, but grain processing may change the bioavailability of carotenoids.

15.
Clin Exp Dent Res ; 10(2): e842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597122

RESUMO

OBJECTIVE: To investigate the effect of common beverages on four currently used provisional restoration materials: Protemp®4, Integrity®, polymethyl methacrylate (PMMA) block, and acrylic resin. Flowable resin composite is included as a control group. MATERIALS AND METHODS: Each material was formed into disks of 10-mm diameter and 4-mm thickness (N = 40) by loading the material into acrylic molds. The exposed surface in the mold was covered using a glass slide to prevent an oxygen inhibition layer, and polymerization then proceeded. The solidified disks were placed in distilled water for 24 h. These samples (n = 8) were then immersed for 14 days in one of four different beverages: water, orange juice, cola, and coffee. Changes in color dimension, hardness, and roughness were observed and then analyzed using two-way repeated analysis of variance. RESULTS: The provisional materials had more obvious changes in all three color dimensions than the flowable resin composite. Integrity showed the biggest changes, followed by acrylic resin and PMMA block, whereas Protemp had the smallest changes. The hardness of all the materials significantly decreased after immersion in any of the beverages for 14 days. There were no changes in surface roughness when the materials were immersed in distilled water. The surface roughness of the PMMA block significantly decreased in orange juice whereas that of Integrity and acrylic resin significantly increased in cola. CONCLUSION: Different kinds of provisional materials had different degrees of staining due to their composition. Moisture had a significant influence on the hardness of materials, and the acidity of cola significantly roughened the surface of the provisional materials.


Assuntos
Bebidas , Polimetil Metacrilato , Resinas Acrílicas , Café , Água
16.
J Prosthodont ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638109

RESUMO

PURPOSE: Dental ceramics deteriorate as a result of thermal aging and exposure to acidic solutions, which change their microhardness and surface roughness. This study assessed the resistance of several computer-aided design and computer-aided manufacturing (CAD-CAM) restorative dental materials in terms of surface roughness and microhardness following exposure to acidic solutions and thermal aging. MATERIALS AND METHODS: Five different monolithic CAD-CAM restorative materials, two leucite-reinforced glass ceramics (G-Ceram and CEREC Blocs), a zirconia-infiltrated lithium silicate (Celtra Duo), a resin nanoceramic (Grandio), and monolithic zirconia (inCoris TZI), were used to create 2-mm-thick rectangular specimens (n = 100). After being immersed in either acidic saliva (pH = 4.0) (ST) or gastric juice (pH = 1.2) (GT), each material was subjected to 10,000 cycles of thermal aging. The Vickers microhardness and average surface roughness of the specimens were assessed at baseline, following thermal aging and exposure to either gastric juice or acidic saliva. The surface properties were examined using an atomic force microscope. The Mann‒Whitney U test with Bonferroni correction and the Wilcoxon signed-rank test was used for statistical analysis (a = 0.05). RESULTS: The surface roughness of two leucite-reinforced glass ceramics (G-ceram and CEREC) significantly decreased with ST (p = 0.027 and p = 0.044). Only the CEREC was affected when the aging protocols were compared, and the ST group had a significant reduction in roughness (p = 0.009). The microhardness values significantly decreased after both aging protocols in all groups except for the ST subgroup of G-Ceram. Only inCoris was affected when the aging protocols were compared, and the GT group exhibited a significant reduction in microhardness (p = 0.002). CONCLUSION: The surface roughness of the tested materials was not affected by the GT. Only leucite ceramics exhibited a decrease in surface roughness in the ST stage. Both aging processes produced a significant decrease in the microhardness of the tested ceramics. Leucite-reinforced glass-ceramic materials may be advantageous for patients with gastroesophageal reflux disease and those with a diet high in acidic foods due to their lower values for changes in microhardness and surface roughness compared to those of other CAD-CAM materials.

17.
Support Care Cancer ; 32(5): 295, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635051

RESUMO

OBJECTIVE: The aim of this in vitro study was to evaluate the effect of radiotherapy on the surface microhardness and roughness of different bioactive restorative materials. MATERIALS AND METHODS: A total of 60-disc specimens (5 mm × 2 mm) were performed in four groups (n = 15 each) from Equia Forte HT, Cention N, Activa Bioactive Restorative, and Beautifil II. Following the polishing procedure (600, 1000, 1200 grit silicon carbide papers), all specimens were irradiated at 2 Gy per fraction, five times a week for a total dose of 70 Gy in 30 fractions over 7 weeks. Before and after the irradiation, the specimens were analyzed regarding the surface roughness and microhardness. Surface morphology was also analyzed by scanning electron microscopy. Kruskal-Wallis test, Wilcoxon test, and paired sample t-test were used for statistical analysis. RESULTS: Significant differences were found after radiation with increased mean roughness of both Cention N (p = 0.001) and Beautifil II (p < 0.001) groups. In terms of microhardness, only the Beautifil II group showed significant differences with decreased values after radiation. There were statistically significant differences among the groups' roughness and microhardness data before and after radiotherapy (p < 0.05). CONCLUSION: The effect of radiotherapy might differ according to the type of the restorative material. Although results may differ for other tested materials, giomer tends to exhibit worse behaviour in terms of both surface roughness and microhardness. CLINICAL RELEVANCE: In patients undergoing head and neck radiotherapy, it should be taken into consideration that the treatment process may also have negative effects on the surface properties of anti-caries restorative materials.


Assuntos
Cárie Dentária , Radioterapia (Especialidade) , Humanos , Cariostáticos , Pescoço , Projetos de Pesquisa
18.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610263

RESUMO

The correlation between magnetic Barkhausen noise (MBN) features and the surface hardness of two types of die steels (Cr12MoV steel and S136 steel in Chinese standards) was investigated in this study. Back-propagation neural network (BP-NN) models were established with MBN magnetic features extracted by different methods as the input nodes to realize the quantitative prediction of surface hardness. The accuracy of the BP-NN model largely depended on the quality of the input features. In the extraction process of magnetic features, simplifying parameter settings and reducing manual intervention could significantly improve the stability of magnetic features. In this study, we proposed a method similar to the magnetic Barkhausen noise hysteresis loop (MBNHL) and extracted features. Compared with traditional MBN feature extraction methods, this method simplifies the steps of parameter setting in the feature extraction process and improves the stability of the features. Finally, a BP-NN model of surface hardness was established and compared with the traditional MBN feature extraction methods. The proposed MBNHL method achieved the advantages of simple parameter setting, less manual intervention, and stability of the extracted parameters at the cost of small accuracy reduction.

19.
Materials (Basel) ; 17(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612201

RESUMO

The ability of cryogenic treatment to improve tool steel performance is well established; however, the selection of optimal heat treatment is pivotal for cost reduction and extended tool life. This investigation delves into the influence of distinct cryogenic and tempering treatments on the hardness, fracture toughness, and tribological properties of Vanadis 6 tool steel. Emphasis was given to comprehending wear mechanisms, wear mode identification, volume loss estimation, and detailed characterization of worn surfaces through scanning electron microscopy coupled with energy dispersive spectroscopy and confocal microscopy. The findings reveal an 8-9% increase and a 3% decrease in hardness with cryogenic treatment compared to conventional treatment when tempered at 170 °C and 530 °C, respectively. Cryotreated specimens exhibit an average of 15% improved fracture toughness after tempering at 530 °C compared to conventional treatment. Notably, cryogenic treatment at -140 °C emerges as the optimum temperature for enhanced wear performance in both low- and high-temperature tempering scenarios. The identified wear mechanisms range from tribo-oxidative at lower contacting conditions to severe delaminative wear at intense contacting conditions. These results align with microstructural features, emphasizing the optimal combination of reduced retained austenite and the highest carbide population density observed in -140 °C cryogenically treated steel.

20.
Materials (Basel) ; 17(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38591994

RESUMO

Secondary phase precipitation in Fe-22Mn-9Al-0.6C low-density steel was investigated during a continuous cooling process with different cooling rates through a DIL805A thermal expansion dilatometer, and the changes in microstructures and hardness by different cooling rates were discussed. The results showed that the matrix of the Fe-22Mn-9Al-0.6C was composed of austenite and δ-ferrite; moreover, the secondary phases included κ-carbide, ß-Mn and DO3 at room temperature. The precipitation temperatures of 858 °C, 709 °C and 495 °C corresponded to the secondary phases B2, κ-carbide and ß-Mn, respectively, which were obtained from the thermal expansion curve by the tangent method. When the cooling rate was slow, it had enough time to accommodate C-poor and Al-rich regions in the austenite due to amplitude modulation decomposition. Furthermore, the Al enrichment promoted δ-ferrite formation. Meanwhile, the subsequent formation of κ-carbide and ß-Mn occurred through the continuous diffusion of C and Mn into austenite. In addition, the hardness of austenite was high at 0.03 °C/s due to the κ-carbide and ß-Mn production and C enrichment, and it was inversely proportional to the cooling rate. It can be concluded that the presence of κ-carbide, DO3 and ß-Mn produced at the austenitic/ferrite interface when the cooling rate was below 0.1 °C/s resulted in κ-carbide and ß-Mn precipitating hardly at cooling rates exceeding 0.1 °C/s, which provides a guideline for the industrial production of Fe-Mn-Al-C low-density steel in the design of the hot working process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...